JDSE

The Journal of Dental Sciences and Education deals with General Dentistry, Pediatric Dentistry, Restorative Dentistry, Orthodontics, Oral diagnosis and DentomaxilloFacial Radiology, Endodontics, Prosthetic Dentistry, Periodontology, Oral and Maxillofacial Surgery, Oral Implantology, Dental Education and other dentistry fields and accepts articles on these topics. Journal of Dental Science and Education publishes original research articles, review articles, case reports, editorial commentaries, letters to the editor, educational articles, and conference/meeting announcements.

EndNote Style
Index
Review
Utilization of artificial intelligence in pediatric dentistry: a comprehensive literature review
Artificial intelligence (AI) refers to the creation of computer systems capable of performing tasks that typically necessitate human intelligence. Several dental specializations, such as pediatric dentistry, increasingly utilize artificial intelligence and its components, including machine learning and deep learning. The advancement of AI in healthcare is associated with the development of AI applications designed to assist medical practitioners in diagnosing patients and determining optimal treatment strategies. Artificial Intelligence refers to the ability of machines to acquire knowledge and utilize that information to perform various cognitive functions, such as language processing, learning, reasoning, and decision-making—essentially emulating human behavior. This article provides an overview of the various applications of AI that are advantageous to pediatric dentistry.


1. Vishwanathaiah S, Fageeh HN, Khanagar SB, Maganur PC. Artificial intelligence its uses and application in pediatric dentistry: a review. Biomedicines. 2023;11(3):788. doi:10.3390/biomedicines11030788
2. Mahajan K, Kunte SS, Patil KV, Shah PP, Shah RV, Jajoo SS. Artificial intelligence in pediatric dentistry-a systematic review. J Dent Res Rev. 2023;10(1):7-12. doi:10.4103/jdrr.jdrr_199_22
3. Alessa N. Application of artificial intelligence in pediatric dentistry: a literature review. J Pharm Bioallied Sci. 2024;16(Suppl 3):S1938-S1940. doi:10.4103/jpbs.jpbs_74_24
4. Lamba J, Malhotra T, Palwankar D, Vats V, Sachdeva A. Artificial intelligence in dentistry-a literature review. Biomed J Sci Technic Res. 2023;51(1):42323-42326. doi:10.26717/BJSTR.2023.51.008050
5. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res. 2020;99(7):769-774. doi:10.1177/ 0022034520915714
6. Thurzo A, Urbanová W, Novák B, et al. Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare. 2022;10:1269. doi:10.3390/healthcare10071269
7. Ghods K, Azizi A, Jafari A, Ghods K. Application of artificial intelligence in clinical dentistry, a comprehensive review of literature. J Dent (Shiraz). 2023;24(4):356-371. doi:10.30476/dentjods.2023.96835.1969
8. Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87(l7):1488-2159.
9. Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus. 2022;14(7):e27405. doi:10.7759/cureus.27405
10. Dave VS, Dutta K. Neural network based models for software effort estimation: a review. Artif Intell Rev. 2014;42(2):295-307. doi:10.1007/s10462-012-9339-x
11. Ding H, Wu J, Zhao W, Matinlinna JP, Burrow MF, Tsoi JKH. Artificial intelligence in dentistry-a review. Front Dent Med. 2023;4:1085251. doi: 10.3389/fdmed.2023.1085251
12. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Human Comput. 2023;14(7): 8459-8486. doi:10.1007/s12652-021-03612-z
13. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021;22(1):18. doi:10.1186/s40510-021-00361-9
14. Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N. Artificial intelligence: applications in orthognathic surgery. J Stomatol Oral Maxillofac Surg. 2019;120(4):347-354. doi:10.1016/j.jormas.2019.06.001
15. Deepika Lakshmi D, Brindha S, Dakshitha S, Deepak N, Moses J, Ranj E. Artificial intelligence in pediatric dentistry: a review. Int J Multidis Res. 2023;5(6):1-10.
16. Talpur S, Azim F, Rashid M, Syed SA, Talpur BA, Khan SJ. Uses of different machine learning algorithms for diagnosis of dental caries. J Healthcare Eng. 2022;2022:1-13. doi:10.1155/2022/5032435
17. Karhade DS, Roach J, Shrestha P, et al. An automated machine learning classifier for early childhood caries. Pediatr Dent. 2021;43(3):191-197.
18. Zaborowicz M, Zaborowicz K, Biedziak B, Garbowski T. Deep learning neural modelling as a precise method in the assessment of the chronological age of children and adolescents using tooth and bone parameters. Sensors (Basel). 2022;22(2):637. doi:10.3390/s22020637
19. Kılıc MC, Bayrakdar IS, Çelik Ö, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021;50(6):20200172. doi:10.1259/dmfr.20200172
20. Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofac Res. 2021;24(Suppl 2):37-42. doi:10.1111/ocr.12542
21. Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Translat Med. 2021;9:9. doi:10.21037/atm-21-119
22. You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020;20(1):141. doi:10.1186/s12903-020-01114-6
Volume 3, Issue 1, 2025
Page : 16-19
_Footer