The Journal of Dental Sciences and Education deals with General Dentistry, Pediatric Dentistry, Restorative Dentistry, Orthodontics, Oral diagnosis and DentomaxilloFacial Radiology, Endodontics, Prosthetic Dentistry, Periodontology, Oral and Maxillofacial Surgery, Oral Implantology, Dental Education and other dentistry fields and accepts articles on these topics. Journal of Dental Science and Education publishes original research articles, review articles, case reports, editorial commentaries, letters to the editor, educational articles, and conference/meeting announcements. This journal is indexed by indices that are considered international scientific journal indices (DRJI, ESJI, OAJI, etc.). According to the current Associate Professorship criteria, it is within the scope of International Article 1-d. Each article published in this journal corresponds to 5 points.

EndNote Style
Preventive and remineralization agents in pediatric dentistry: review of the literature
Tooth decay, which is most common in childhood, especially in the 2-5 age group, is a health problem that should be addressed as a priority. It has been reported that the application of remineralizing agents to early stage caries reduces early material loss and stops the progression of caries. In studies conducted from the past to the present, various caries preventive agents have been investigated and utilized within the scope of preventive dentistry for the early diagnosis of caries and prevention of carious lesions.

1. Karabekiroğlu S, Ünlü N. The importance and role of early preventionpractices in community-based preventive oral health programs. J EgeUniv School Dent. 2017;38(2):89-100.
2. Kargül B, Sezer B. Current remineralizing agents in caries management.Turkiye Klin J Dent Sci. 2020;26(3):472-486.
3. Yalçın A, Özeler A, Bakır EP. Treatment of enamel hypoplasia with resininfiltration technique: a case report rezin. Dent J Dicle. 2021;2(1):1-4.
4. Groeneveld A, van Eck AAMJ, Backer Dirks O. Fluoride incaries prevention: is the effect pre- or post-eruptive? J Dent Res.1990;69(suppl_2):751-755.
5. Moi GP, Tenuta LMA, Cury JA. Anticaries potential of a fluoridemouthrinse evaluated in vitro by validated protocols. Braz Dent J.2008;19(2):91-96.
6. Nalbantgil D, Öztoprak MO, Çakan DG, Bozkurt K, Arun T. Preventionof demineralization around orthodontic brackets using two differentfluoride varnishes. Eur J Dent. 2013;7(1):41-47.
7. Chu CH, Lo ECM. Microhardness of dentine in primary teeth aftertopical fluoride applications. J Dent. 2008;36(6):387-391.
8. Calvo AFB, Tabchoury CPM, del Bel Cury AA, Tenuta LMA, da SilvaWJ, Cury JA. Effect of acidulated phosphate fluoride gel applicationtime on enamel demineralization of deciduous and permanent teeth.Caries Res. 2012;46(1):31-37.
9. Rodrigues E, Delbem ACB, Pedrini D, Cavassan L. Enamelremineralization by fluoride-releasing materials: proposal of a pH-cycling model. Braz Dent J. 2010;21(5):446-451.
10. Peng JJY, Botelho MG, Matinlinna JP. Silver compounds used indentistry for caries management: a review. J Dent. 2012;40(7):531-541.
11. Scarpelli BB, Punhagui MF, Hoeppner MG, et al. In vitro evaluation ofthe remineralizing potential and antimicrobial activity of a cariostaticagent with silver nanoparticles. Braz Dent J. 2017;28(6):738-743.
12. Nozari A, Ajami S, Rafiei A, Niazi E. Impact of nano hydroxyapatite,nano silver fluoride and sodium fluoride varnish on primary teethenamel remineralization: An in vitro study. J Clin Diagn Res.2017;11(9):97-100.
13. Gao SS, Zhao IS, Hiraishi N, et al. Clinical trials of silver diaminefluoride in arresting caries among children: a systematic review. JDRClin Trans Res. 2016;1(3):201-210.
14. Zaffarano L, Salerno C, Campus G, et al. Silver diamine fluoride(sdf) efficacy in arresting cavitated caries lesions in primary molars:a systematic review and metanalysis. Int J Environ Res Public Health.2022;19(19):12917.
15. Mei ML, Li QL, Chu CH, Lo ECM, Samaranayake LP. Antibacterialeffects of silver diamine fluoride on multi-species cariogenic biofilm oncaries. Ann Clin Microbiol Antimicrob. 2013;12(1):4.
16. Wu YF, Salamanca E, Chen IW, et al. Xylitol-containing chewing gumreduces cariogenic and periodontopathic bacteria in dental plaque-microbiome investigation. Front Nutr. 2022;9:882636.
17. Siqueira VL, Barreto GS, Silva EBV, et al. Effect of xylitol varnishes onenamel remineralization of immature teeth: in vitro and in situ studies.Braz Oral Res. 2021;35:e137.
18. Gargouri W, Zmantar T, Kammoun R, Kechaou N, Ghoul-Mazgar S.Coupling xylitol with remineralizing agents improves tooth protectionagainst demineralization but reduces antibiofilm effect. Microb Pathog.2018;123:177-182.
19. Tuncer D, Önen A, Yazıcı AR. Effect of chewing gums with xylitol,sorbitol and xylitol-sorbitol on the remineralization and hardness ofinitial enamel lesions in situ. Dent Res J. 2014;11(5):537-543.
20. Takatsuka T, Exterkate RAM, Cate JM. Effects of isomalt on enamel de-and remineralization, a combined in vitro pH-cycling model and in situstudy. Clin Oral Investig. 2008;12(2):173-177.
21. Hayes ML, Roberts KR. The breakdown of glucose, xylitol and othersugar alcohols by human dental plaque bacteria. Arch Oral Biol.1978;23(6):445-451.
22. Akkurt MD. Chitin, chitosan and its uses in dentistry. ADO J Clin Sci.2012;6(2):1206-1211.
23. Hayashi Y, Ohara N, Ganno T, Ishizaki H, Yanagiguchi K. Chitosan-containing gum chewing accelerates antibacterial effect with anincrease in salivary secretion. J Dent. 2007;35(11):871-874.
24. Arnaud TMS, de Barros Neto B, Diniz FB. Chitosan effect ondental enamel de-remineralization: an in vitro evaluation. J Dent.2010;38(11):848-852.
25. Krishnakumar G, Gaviappa D, Guruswamy S. Anticaries efficacyof liquorice lollipop: an ex vivo study. J Contemp Dent Pract.2018;19(8):937-942.
26. Messier C, Epifano F, Genovese S, Grenier D. Licorice and itspotential beneficial effects in common oro-dental diseases. Oral Dis.2012;18(1):32-39.
27. Sahin F, Oznurhan F. Antibacterial efficacy and remineralizationcapacity of glycyrrhizic acid added casein phosphopeptide-amorphouscalcium phosphate. Microsc Res Tech. 2020;83(7):744-754.
28. Sela MN, Steinberg D, Segal R. Inhibition of the activity ofglucosyltransferase from Streptococcus mutans by glycyrrhizin. OralMicrobiol Immunol. 1987;2(3):125-128.
29. Chu JP, Li JY, Hao YQ, Zhou XD. Effect of compounds of Gallachinensis on remineralisation of initial enamel carious lesions in vitro.J Dent. 2007;35(5):383-387.
30. Zhang L, Zou L, Li J, et al. Effect of enamel organic matrix on thepotential of Galla chinensis to promote the remineralization of initialenamel carious lesions in vitro. Biomed Mater. 2009;4(3):31-37.
31. Huang S, Gao S, Cheng L, Yu H. Combined effects of nano-hydroxyapatite and Galla chinensis on remineralisation of initialenamel lesion in vitro. J Dent. 2010;38(10):811-819.
32. Abdel-Azem HM, Elezz AFA, Safy RK. Effect of galla chinensis onremineralization of early dentin lesion. Eur J Dent. 2020;14(4):651-656.
33. Amaechi BT, Porteous N, Ramalingam K, et al. Remineralization ofartificial enamel lesions by theobromine. Caries Res. 2013;47(5):399-405.
34. Sulistianingsih S, Irmaleny I, Hidayat OT. The remineralizationpotential of cocoa (Theobroma cacao) bean extract to increase theenamel micro hardness. Padjadjaran J Dentistry. 2017;29(2):107-112.
35. Ikenoa K, Ikeno T, Miyazawah C. Effects of propolis on dental caries inrats. Caries Res. 1991;25(5):347-351.
36. Abbasi AJ, Mohammadi F, Bayat M, et al. Applications of propolis indentistry: a review. Ethiop J Health Sci. 2018;28(4):505-512.
37. Sardana D, Indushekar K, Manchanda S, Saraf BG, Sheoran N. Roleof propolis in dentistry: review of the literature. Focus AlternatComplement Therap. 2013;18(3):118-125.
38. Zaleh AA, Salehi-Vaziri A, Pourhajibagher M, Bahador A. Thesynergistic effect of nano-propolis and curcumin-based photodynamictherapy on remineralization of white spot lesions: an ex vivo study.Photodiagnosis Photodyn Ther. 2022;38:102789.
39. Amalina R, Soekanto SA, Gunawan H, Sahlan M. Analysisof CPP-ACPcomplex in combination with propolis to remineralize enamel. J IntDent Med Res. 2017;10:814-819.
40. Jawale K, Kamat S, Patil J, Nanjannawar G, Chopade R. Grapeseed extract: an innovation in remineralization. J Conserv Dent.2017;20(6):415.
41. Delimont NM, Carlson BN. Prevention of dental caries by grapeseed extract supplementation: a systematic review. Nutr Health.2020;26(1):43-52.
42. Benjamin S, Roshni, Thomas SS, Nainan MT. Grape seed extract as apotential remineralizing agent: a comparative in vitro study. J ContempDent Pract. 2012;13(4):425-430.
43. Mirkarimi M, Eskandarion S, Bargrizan M, Delazar A, KharazifardMJ. Remineralization of artificial caries in primary teeth by grapeseed extract: an in vitro study. J Dent Res Dent Clin Dent Prospects.2013;7(4):206-210.
44. Nagi SM, Hassan SN, El-Alim SHA, Elmissiry MM. Remineralizationpotential of grape seed extract hydrogels on bleached enamel comparedto fluoride gel: an in vitro study. J Clin Exp Dent. 2019;11(5):401-407.
45. Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial andantioxidant properties of rosemary and sage (Rosmarinus officinalis L.and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem.2007;55(19):7879-7885.
46. de Carvalho CCCR, Caramujo MJ. Ancient procedures for the high-tech world: health benefits and antimicrobial compounds from themediterranean empires. Open Biotechnol J. 2008;2(1):235-246.
47. Al-Duboni G, Osman MT, Al-Naggar R. Antimicrobial activity ofaqueous extracts of cinnamon and ginger on two oral pathogenscausing dental caries. Res J Pharm Biol Chem Sci. 2013;4(3):957-965.
48. Bilgin G, Yanıkoğlu F, Tağtekin D. Remineralization potential of herbalmixtures: an in situ study. Pripex-Inx J Res. 2016;5(2):264-268.
49. Hossam E. Effectiveness of natural remineralizing agents on ınitialenamel caries: in vitro study. Ahram J Can Dent. 2022;1(1):1-12.
50. Park M, Bae J, Lee DS. Antibacterial activity of [10]-gingerol and[12]-gingerol isolated from ginger rhizome against periodontal bacteria.Phytother Res. 2008;22(11):1446-1449.
51. Butt MS, Sultan MT. Ginger and its health claims: molecular aspects.Crit Rev Food Sci Nutr. 2011;51(5):383-393.
52. Ghasemzadeh A, Jaafar HZE, Rahmat A. Antioxidant activities, totalphenolics and flavonoids content in two varieties of Malaysia youngginger (Zingiber officinale Roscoe). Molecules. 2010;15(6):4324-4333.
53. Ohara A, Saito F, Matsuhisa T. Screening of antibacterial activitiesof edible plants against streptococcus mutans. Food Sci Technol Res.2008;14(2):190-193.
54. Hassan S, Hafez A, Elbaz MA. Remineralization potential of gingerand rosemary herbals versus sodium fluoride in treatment of white spotlesions: a randomized clinical trial. Egypt Dent J. 2021;67(2):1677-1684.
55. Burwell AK, Litkowski LJ, Greenspan DC. Calcium sodiumphosphosilicate (NovaMin): remineralization potential. Adv Dent Res.2009;21(1):35-39.
56. Cerruti M, Greenspan D, Powers K. Effect of pH and ionic strength onthe reactivity of Bioglass 45S5. Biomaterials. 2005;26(14):1665-1674.
57. Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glasspaste on oral microorganisms. Acta Odontol Scand. 1998;56(3):161-165.
58. Ramashetty Prabhakar A, Arali V. Comparison of the remineralizingeffects of sodium fluoride and bioactive glass using bioerodible gelsystems. J Dent Res Dent Clin Dent Prospects. 2009;3(4):117-121.
59. Bordea IR, Candrea S, Alexescu GT, et al. Nano-hydroxyapatite use indentistry: a systematic review. Drug Metab Rev. 2020;52(2):319-332.
60. Evis Z. Çeşitli iyonlar eklenmiş nanohidroksiapatitler: üretimyöntemleri, iç yapı, mekanik ve biyouyumluluk özellikleri yönlerindenincelenmesi. Int J Eng Res Devol. 2011;3(1):55-65.
61. Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-hydroxyapatite (nHAp) in the remineralization of early dental caries: ascoping review. Int J Environ Res Public Health. 2022;19(9):2-14.
62. Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentrationon remineralization of initial enamel lesion in vitro. Biomed Mater.2009;4(3):034104.
63. Jeong SH, Jang SO, Kim KN, Kwon HK, Park YD, Kim BI.Remineralization potential of new toothpaste containing nano-hydroxyapatite. Key Eng Mater. 2006;309(311):537-540.
64. Li L, Pan H, Tao J, et al. Repair of enamel by using hydroxyapatitenanoparticles as the building blocks. J Mater Chem. 2008;18(34):4079-4084.
65. Onuma K, Yamagishi K, Oyane A. Nucleation and growth ofhydroxyapatite nanocrystals for nondestructive repair of early carieslesions. J Cryst Growth. 2005;282(1):199-207.
66. Yamagishi K, Onuma K, Suzuki T, et al. Materials chemistry: a syntheticenamel for rapid tooth repair. Nature. 2005;433(7028):819.
67. Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel anddentine remineralization by nano-hydroxyapatite toothpastes. J Dent.2011;39(6):430-437.
68. Swarup J, Rao A. Enamel surface remineralization: using syntheticnanohydroxyapatite. Contemp Clin Dent. 2012;3(4):433-436.
69. Savaş S, Küçükyılmaz E. Diş hekimliğinde kullanılan remineralizasyonajanları ve çürük önleyici ajanlar. Atatürk Üniv Diş Hekimliği Fak Derg.2014;24(3):113-125.
70. Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation,characterization and in vitro efficacy of an acid-modified beta-TCPmaterial for dental hard-tissue remineralization. Acta Biomater.2010;6(3):969-978.
71. Thimmaiah C, Shetty P, Shetty SB, Natarajan S, Thomas NA.Comparative analysis of the remineralization potential of CPP-ACPwith fluoride, tri-calcium phosphate and nano hydroxyapatite usingSEM/EDX - an in vitro study. J Clin Exp Dent. 2019;11(12):1120-1126.
72. Hamba H, Nakamura K, Nikaido T, Tagami J, Muramatsu T.Remineralization of enamel subsurface lesions using toothpastecontaining tricalcium phosphate and fluoride: an in vitro µCT analysis.BMC Oral Health. 2020;20(1):292-301.
73. Aimutis WR. Bioactive properties of milk proteins with particularfocus on anticariogenesis. J Nutr. 2004;134(4):989-995.
74. Cai F, Shen P, Walker GD, Reynolds C, Yuan Y, Reynolds EC.Remineralization of enamel subsurface lesions by chewing gum withadded calcium. J Dent. 2009;37(10):763-768.
75. Çetin B, Avşar A, Ulusoy AT. Kazein içerikli besinler ve dental ürünler.Atatürk Üniv Diş Hekimliği Fak Derg. 2011;2011(4):24-31.
76. Iijima Y, Cai F, Shen P, Walker G, Reynolds C, Reynolds EC. Acidresistance of enamel subsurface lesions remineralized by a sugar-freechewing gum containing casein phosphopeptide-amorphous calciumphosphate. Caries Res. 2004;38(6):551-556.
77. Morgan MV, Adams GG, Bailey DL, Tsao CE, Fischman SL, ReynoldsEC. The anticariogenic effect of sugar-free gum containing CPP-ACPnanocomplexes on approximal caries determined using digital bitewingradiography. Caries Res. 2008;42(3):171-184.
78. Bijle MNA, Yiu CKY, Ekambaram M. Calcium-based caries preventiveagents: a meta-evaluation of systematic reviews and meta-analysis. JEvid Based Dent Pract. 2018;18(3):203-217.
79. Yazicioğlu O, Yaman BC, Güler A, Koray F. Quantitative evaluationof the enamel caries which were treated with casein phosphopeptide-amorphous calcium fluoride phosphate. Niger J Clin Pract.2017;20(6):686-692.
80. Imani MM, Safaei M, Afnaniesfandabad A, et al. Efficacy of CPP-ACPand CPP-ACPF for prevention and remineralization of white spotlesions in orthodontic patients: a systematic review of randomizedcontrolled clinical trials. Acta Inform Med. 2019;27(3):199-204.
81. Jayarajan J, Janardhanam P, Jayakumar P. Efficacy of CPP-ACP andCPP-ACPF on enamel remineralization-an in vitro study usingscanning electron microscope and DIAGNOdent. Indian J Dent Res.2011;22(1):77-82.
82. Brunton PA, Davies RPW, Burke JL, et al. Treatment of early carieslesions using biomimetic self-assembling peptides--a clinical safetytrial. Br Dent J. 2013;215(4):E6.
83. ten Cate JM, Featherstone JDB. Mechanistic aspects of the interactionsbetween fluoride and dental enamel. Crit Rev Oral Biol Med.1991;2(3):283-296.
84. Takahashi F, Kurokawa H, Shibasaki S, Kawamoto R, Murayama R,Miyazaki M. Ultrasonic assessment of the effects of self-assemblingpeptide scaffolds on preventing enamel demineralization. Acta OdontolScand. 2016;74(2):142-147.
Volume 2, Issue 1, 2024
Page : 18-23