JDSE

The Journal of Dental Sciences and Education deals with General Dentistry, Pediatric Dentistry, Restorative Dentistry, Orthodontics, Oral diagnosis and DentomaxilloFacial Radiology, Endodontics, Prosthetic Dentistry, Periodontology, Oral and Maxillofacial Surgery, Oral Implantology, Dental Education and other dentistry fields and accepts articles on these topics. Journal of Dental Science and Education publishes original research articles, review articles, case reports, editorial commentaries, letters to the editor, educational articles, and conference/meeting announcements. This journal is indexed by indices that are considered international scientific journal indices (DRJI, ESJI, OAJI, etc.). According to the current Associate Professorship criteria, it is within the scope of International Article 1-d. Each article published in this journal corresponds to 5 points.

EndNote Style
Index
Review
An overview to biocompatibility of resin based restorative materials
Nowadays, resin based materials find a wide range of use in dentistry due to their aesthetic properties, mechanical durability and cost advantages. Dentistry materials; They can have an effect because they are in direct contact with various tissues such as gums, tongue, lips and cheeks, in addition to periodontium, pulp, dentin and enamel. It is important that resin materials produced with new technologies to be used in restorative dentistry not only have mechanical, physical, functional and aesthetic properties, but also be carefully evaluated in terms of biological compatibility. The purpose of this review is to review the basic concepts and methods related to biocompatibility, to present data from studies on the cytotoxicity of resin-based materials, and finally to make recommendations for clinical applications.


1. Özyurt E. Güncel Rezin Kompozit Materyallerin Fiziksel ve OptikÖzelliklerinin Değerlendirilmesi. Selcuk Dental Journal. 2023; 10(1):7-11.
2. Çelik Ç., Özel Y. Rezin Restoratif Materyallerin PolimerizasyonundaKullanılan Işık Kaynakları. ADO Klinik Bilimler Dergisi. 2008; 2(2):109-115.
3. Süsgün Yıldırım Z. et al. Diş Hekimliğinde Biyouyumluluk veDeğerlendirme Yöntemleri. Selcuk Dental Journal. 2017; 4(3):162-169.
4. Şişman R, Aksoy A, Yalçın M, Karaöz E. Cytotoxic Effects of BulkFill Composite Resins on Human Dental Pulp Stem Cells. J Oral Sci.2016;58(3):299-305.
5. Uzun İH, Bayındır F. Dental materyallerin biyouyumluluk testyöntemleri. GÜ. Diş Hek. Fak. Derg. 2011;28(2):115-122.
6. Schmalz G. Strategies to ımprove biocompatibility of dental materials.Curr Oral Health Rep 2014;1: 222-231.
7. Mallineni SK, Nuvvula S, Matinlinna JP, Yiu CK, King NM.Biocompatibility of various dental materials in contemporary dentistry:a narrative insight. Journal of Investigative and Clinical Dentistry 2013;4: 9-19.
8. Tuncer S, Demirci M. Dental Materyallerde BiyouyumlulukDeğerlendirmeleri. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi.2011;21(2):141-149.
9. Murray PE, About I, Lumiey PJ, et al. Cavity remaning dentin thicknessand pulpal activity. Am J Dent 2002; 15: 41-46.
10. Atalayin Ozkaya C, Tezel H, Armagan G, et al. The Effects of ExtendedPolymerization Time for Different Resin Composites on the ReactiveOxygen Species Production and Cell Viability. J Oral Sci 2021; 63(1):46-49.
11. Chatzistavrou X, Lefkelidou A, Papadopoulou L, Pavlidou E,Paraskevopoulos K, Christopher Fenno J, et al. Bactericidal andBioactive Dental Composites. Front Physiol 2018; 9: 1-11.
12. Goldberg M. In vitro and in vivo studies on the toxicity of dental resincomponents: a review. Clin Oral Invest 2008; 12: 1-8.
13. Ertan B, Özkaya Ç. Biyouyumluluk Kavramına Restoratif Diş TedavisiÖzelinde Genel Bir Bakış. İzmir Diş Hekimleri Odası Bilimsel Dergisi2022; 2(1), 1.
14. Demir, N et al. Kendinden bağlanabilen farklı adeziv rezin simanlarınsitotoksisitelerinin in vitro olarak değerlendirilmesi. Acta OdontologicaTurcica, 2018;35(2): 44-48.
15. Schmalz G. Materials science: biological aspects. J. Dent. Res.2002;81:660-663.
16. Liu B, Gan X, Zhao Y, Tegdma releasing in resin composites withdifferent filler contents and its correlation with mitochondrial mediatedcytotoxicity in human gingival fibroblasts. J Biomed Mater Res Part A,2019;107(1):1132-1142.
17. Wataha JC, et al. In vitro biological response to core and flowable dentalrestorative materials. Dental materials, 2003;19(1):25-31.
18. Marigo L, Nocca G, Fiorenzano G, et al. Influences of different air-inhibition coatings on monomer release, microhardness, and colorstability of two composite materials. Biomed Research International,2019; Article ID 4240264.
19. Morsiya, C. A review on parameters affecting properties of biomaterialSS 316L. Australian Journal of Mechanical Engineering, 2022;20(3): 803-813.
20. Tadin A. et al. Composite İnduced Toxicity in Human Gingival andPulp Fibroblast Cells. Acta Odontol Scand. 2014;72(4):304-311.
21. Türkcan İ. , Nalbant A. D. Dental protetik materyallerin biyolojikuyumluluğu ve test yöntemleri. Acta Odontologica Turcica. 2016; 33(3):145-152.
22. Shahi S. et al. A review on potential toxicity of dental material andscreening their biocompatibility. Toxicology mechanisms and methods,2019;29(5): 368-377.
23. Atalayın Ç, Tezel H, Ergücü Z. Rezin Esaslı Dental MateryallerinSitotoksisitesine Genel Bir Bakış. EÜ Dişhek Fak Derg 2016; 37(2): 47-53.
24. Geurtsen W, Biocompatibility of resin-modified filling materials. CritRev Oral Biol Med. 2000;11(3):333-355.
25. Annunziata M, Aversa R, Apicella A, et al. In vitro biological responseto a light-cured composite when used for cementation of compositeinlays. Dent Materials 2006; 22(12):1081-1085.
26. About I, Camps J, Burger AS, et al. Polymerized bonding agents and thedifferantiation in vitro of human pulp cells into odontoblast-like cells.Dent Mater 2005; 21(2):156-163. 2005;
27. Thonemann B, Schmalz G, Hiller KA, et al. Responses of L929 mousefibroblasts, primary and immortalized bovine dental papilla-derivedcell lines to dental resin components. Dental materials, 2002, 18: 318-323. 2002.
28. Moharamzadeh K, Brook I, Noort R, Biocompability of resin-baseddental materials. Materials 2009; 2(2): 514-548.
29. Ian H, Wang M, Wang S, et al. 3D bioprinting for cell culture and tissuefabrication. Bio-Design and Manufacturing 2018;1:45-61.
30. Murray PE, Lumley PJ, Ross HF, Smith AJ. Tooth slice organ culture forcytotoxicity assesment of dental materials. Biomaterials 2000; 21(16):1711-1721.
31. Murray P, Godoy CG, Godoy FG. How is the biocompatibility of dentalmaterials evaluated,Med Oral Patol Oral Cir Bucal. 2007;12(11):258-266.
32. Lim S, Yap A, Loo C, et al. Comparison of cytotoxicity test models forevaluating resin-based composites. Human & experimental toxicology.2016;36(4):339-348.
33. Schmalz G, Hiller KA, Nunez LJ et al. Permeability characteristics ofbovine and human dentin under different pretreatment conditions. JEndod 2001; 27: 23-30.
34. Freshney Ian R. Culture of Animal Cells: A Manual of Basic Technique,Fifth Edition. Haboken: John Wiley & Sons; 2005; 1-216.
35. Kiliç K, Kesim B, Sümer Z, Polat Z, Öztürk A. Tam seramikmateryallerinin biyouyumluluğunun MTT testi ile incelenmesi.2010;19(2):125-132.
36. Wataha JC. Principles of biocompatibility for dental practitioners. JProsthet Dent. 2001;86(2):203-209.
37. Cao T, Saw TY, Heng BC, et al. Comparison of different test modelsfor the assessment of cytotoxicity of composite resins. J Appl Toxicol.2005;25(2):101-108.
38. Costa CS, Hebling J, Randall RC. Human pulp response to resincements used to bond inlay restorations. Dent Mat 2006; 22(10): 954-962.
39. Bakır, Elif Pinar, et al. Are resin-containing pulp capping materialsas reliable as traditional ones in terms of local and systemic biologicaleffects. Dent Mater J, 2022, 41.1: 78-86.
40. Manaspon C, et al. Human dental pulp stem cell responses to differentdental pulp capping materials. BMC Oral Health, 2021;21.(1):1-13.
41. Kraus D, Wolfgarten M, Enkling N, et al. In-vitro cytocompatibilityof dental resin monomers on osteoblast-like cells. J Dent 2017;65:76-82.
42. Goncalves F, etal. A comparative study of bulk-fill composites: degreeof conversion, post-gel shrinkage and cytotoxicity. Brazilian OralResearch, 2018; 32: 1-8.
43. Bandarra S, et al. Biocompatibility of self-adhesive resin cement withfibroblast cells. J. Prosthet. Dent. 2021; 125(4):705.e1-705.e7.
44. Moussa H, Jones MM, Huo N, et al. Biocompatibility, mechanical, andbonding properties of a dental adhesive modified with antibacterialmonomer and cross-linker. Clin Oral Investig. 2021;25(5):2877-2889.
45. Brzovic Rajic V, Zeljezic D, Malcic Ivaniševic A, et al. Cytotoxicity andGenotoxicity of Resin Based Dental Materials in Human LymphocytesIn Vitro. Acta Clin Croat. 2018;57(2):278-285.
46. Gociu M, Paˆtroi D, Prejmerean C, Paˆstraˆv O, Boboia S, Prodan D,Moldovan M. Biology and cytotoxicity of dental materials: an in vitrostudy. Rom J Morphol Embryol 2013; 54(2):261-265.
47. Attik N, Hallay F, Bois L, et al. Mesoporous silica fillers and resincomposition effect on dental composi- tes cytocompatibility. DentalMaterials, 2017;33(2):166-174.
48. Taghizadehghalehjoughi A, OK E, KAMALAK H. KompozitMateryallerin Gingival Fibroblast Hücreleri Üzerindeki SitotoksikEtkisinin İncelenmesi. Turkiye Klinikleri Dishekimligi Bilimleri Dergisi,2019, 25(3): 310-318.
49. Bapat R, Parolia A, Chaubal T, et al. Recent update on potentialcytotoxicity, biocompatibility and preventive measures of biomaterialsused in dentistry. Biomater Sci 2021; 9: 3244.
50. Lee S, Kim S, Kim J, et al. Depth-dependent cellular response fromdental bulk-fill resins in human dental pulp stem cells. Stem Cells Int2019; 11.
51. Pagano S, Lombardo G, Balloni S, Bodo M, Cianetti S, Barbati A et al.Cytotoxicity of universal dental adhesive systems: Assessment in vitroassays on human gingival fibroblasts. Toxicology in vitro 2019; 60: 252-260.
52. Çelik N, Binnetoğlu D, Ozakar N, The cytotoxic and oxidative effects ofrestorative materials in cultured human gingival fibroblasts. Drug andChemical Toxicology, 2019;29:1-6.
53. Srivastava VK, Singh RK, Malhotra SN, Singh A. To evaluatecytotoxicity of resin-based restorative materials on human lymphocytesby trypan blue exclusion test: An in vitro study. International Journal ofClinical Pediatric Dentistry, 2010;3:147-152.
54. Aydın MS. Bakır Ş. Bakır E. Evaluation of biocompatibility of fourdifferent one-step self-etching adhesives by animal experimentalmethod. J Dent Sci Educ. 2023;1(3):81-89.
55. Süsgün Yıldırım Z, Bakır Ş, Bakır E, Foto E. Qualitative andQuantitative Evaluation of Cytotoxicity of Five Different One-Step Self-Etching Adhesives. Oral Health & Preventive Dentistry. 2018;16(6):525-532.
56. Güngör AS, et al. Effects of bioactive pulp capping materials on cellviability, differentiation and mineralization behaviors of human dentalpulp stem cells in vitro. Operative dentistry, 2023;48(3):317-328.
57. Zhang N, Chen C, Melo M, Bai Y, Cheng L, Xu H. A Novel Protein-Repellent Dental Composite Containing 2-MethacryloyloxyethylPhosphorylcholine. Int J Oral Sci 2015; 7: 103-109.
58. Ertan B,Özkaya Atalayın Ç. Biyouyumluluk Kavramına Restoratif DişTedavisi Özelinde Genel Bir Bakış. İzmir Diş Hekimleri Odası BilimselDergisi 2022; 2(1): 1-12.
59. Aksu S, Gürbüz T. Farklı Pulpa Kaplama Materyallerinin ToplamOksidan ve Antioksidan Kapasitelerinin İnsan Dental Pulpa KökHücreleri Üzerinde Değerlendirilmesi. Selcuk Dent J. 2020;7(2):192-199.
60. Chumpraman A, et al. Biocompatibility and mineralization activityof modified glass ionomer cement in human dental pulp stem cells.Journal of Dental Sciences, 2023;18(3):1055-1061.
Volume 1, Issue 4, 2023
Page : 109-116
_Footer